The shaft of the type 1 fimbriae regulates an external force to match the FimH catch bond.

نویسندگان

  • Johan Zakrisson
  • Krister Wiklund
  • Ove Axner
  • Magnus Andersson
چکیده

Type 1 fimbriae mediate adhesion of uropathogenic Escherichia coli to host cells. It has been hypothesized that due to their ability to uncoil under exposure to force, fimbriae can reduce fluid shear stress on the adhesin-receptor interaction by which the bacterium adheres to the surface. In this work, we develop a model that describes how the force on the adhesin-receptor interaction of a type 1 fimbria varies as a bacterium is affected by a time-dependent fluid flow mimicking in vivo conditions. The model combines in vivo hydrodynamic conditions with previously assessed biomechanical properties of the fimbriae. Numerical methods are used to solve for the motion and adhesion force under the presence of time-dependent fluid profiles. It is found that a bacterium tethered with a type 1 pilus will experience significantly reduced shear stress for moderate to high flow velocities and that the maximum stress the adhesin will experience is limited to ∼120 pN, which is sufficient to activate the conformational change of the FimH adhesin into its stronger state but also lower than the force required for breaking it under rapid loading. Our model thus supports the assumption that the type 1 fimbria shaft and the FimH adhesin-receptor interaction are optimized to each other, and that they give piliated bacteria significant advantages in rapidly changing fluidic environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds

We determined whether the molecular structures through which force is applied to receptor-ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3-1.5 microm in length) built from a helically coiled structural ...

متن کامل

Dynamic modulation of fimbrial extension and FimH-mannose binding force on live bacteria under pH changes: a molecular atomic force microscopy analysis.

Mechanical and conformational properties of type 1 fimbriae were evaluated on live bacterial cells by Single Molecule Force Spectroscopy (SMFS) and Dynamic Force Spectroscopy (DFS) in buffered solutions whose pH varied from 3 to 9. We evidenced that both fimbrial extension and fimbrial binding force to mannosylated-surface are modulated with changing the externally applied shear force and the s...

متن کامل

Catch-bond mechanism of the bacterial adhesin FimH.

Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial gl...

متن کامل

The Bacterial Fimbrial Tip Acts as a Mechanical Force Sensor

There is increasing evidence that the catch bond mechanism, where binding becomes stronger under tensile force, is a common property among non-covalent interactions between biological molecules that are exposed to mechanical force in vivo. Here, by using the multi-protein tip complex of the mannose-binding type 1 fimbriae of Escherichia coli, we show how the entire quaternary structure of the a...

متن کامل

The Non-Fimbriate Phenotype Is Predominant among Salmonella enterica Serovar Choleraesuis from Swine and Those Non-Fimbriate Strains Possess Distinct Amino Acid Variations in FimH

Although most Salmonella serovars are able to infect a range of animal hosts, some have acquired the ability to cause systemic infections of specific hosts. For example, Salmonella enterica serovar Choleraesuis is primarily associated with systemic infection in swine. Adherence to host epithelial cells is considered a prerequisite for initial infection, and fimbrial appendages on the outer memb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 104 10  شماره 

صفحات  -

تاریخ انتشار 2013